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Analytical calculation of two leading exponents of the 
dilute Potts model 

B Nienhuist 
Laboratorium voor Technische Natuurkunde THD Postbus 5046, 2600 GA Delft, The 
Netherlands and Department of Electronics, The Weizmacn Institut of Science, Rehovot, 
Israel 

Received 19 June 1981 

Abstract. A Potts model on a square lattice with two- and four-spin interaction and site and 
bond dilution is shown to be dual to itself. The model is mapped onto a vertex problem 
which in turn is equivalent to a solid-on-solid model. By means of these mappings the dilute 
Potts model can be written as a Gaussian-like model with staggered and direct periodic 
fields. The leading and next-to-leading exponents of the Potts model are calculated, subject 
to the validity of certain assumptions. 

1. Introduction 

The last decade has brought considerable progress in the understanding of the two- 
dimensional q-state Potts (1952) model. By virtue of an equivalence with a staggered 
vertex model, demonstrated by Temperley and Lieb (197 l ) ,  Baxter (1973) showed that 
the model with 4 > 4  has a first-order transition and that with 4 ~4 a second-order 
transition. This fact was not readily verifiable by numerical methods (Kim and Joseph 
1975, Dasgupta 1977, den Nijs 1978). den Nijs (1979) conjectured a specific depen- 
dence of the thermal exponents on 4 for 4 ~ 4 ,  based mainly on numerical results. 
Nienhuis et aZ(l979,1980), introducing the concept of the diluted Potts model or Potts 
lattice gas, provided a renormalisation group understanding of the change of the order 
of the transition at 4 = 4. This led Rebbi and Swendsen (1980) to explain why 
previous numerical work had not detected the first-order transition. Recently Black 
and Emery (1981) verified the original conjecture of den Nijs for the thermal critical 
exponents by a direct calculation. 

It is the purpose of this paper to generalise some exact results for the Potts model to 
the dilute Potts model, in order to calculate the tricritical and next-to-leading 
exponents. It is shown that a suitably generalised Potts lattice gas is again self-dual and 
can be mapped onto a vertex model and ultimately onto a Gaussian-type model in 
fields. With this mapping it can be shown that the extension of the den Nijs conjecture 
gives the tricritical thermal exponent. The cross-over tricritical exponent and a 
correction to scaling exponent for the critical point turn out to be given by a formula 
previously conjectured by Burkhardt (1980). 

t Address after September 1, 1981: The James Franck Institute, University of Chicago, 5640 Ellis Avenue, 
Chicago Illinois 60637, USA. 
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2. The model 

Each site i of a Potts lattice gas is either vacant or occupied by a Potts variable s, which 
can assume q values. The occupation is described by a variable r j  which is 0 (vacant) or 1 
(occupied). The most general nearest-neighbour Hamiltonian for this model on a 
square lattice is 

The summations are over the edges ( i ,  j )  and the sites i of the lattice. The couplings J 
and K are Potts and lattice gas interactions, and the chemical potential A controls the 
concentration of vacancies. The pure Potts model (A = -00) on a square lattice is 
self-dual and is equivalent to a six-vertex model (Temperley and Lieb 1971). These 
nice properties are lost for the dilute model, and we shall attempt to restore them. 

It has been recognised (Kondor 1980, Wu 1981) that vacancies map under duality 
onto multi-spin interaction. It turns out that the lattice gas coupling of vacancies can be 
described by bond dilution in the dual Hamiltonian. We shall show that the following 
Hamiltonian is form-invariant under duality: 

H = Ho + Hi,  ( 2 ,  

in which the edge variables rij = 0 or 1. The bond dilution is governed by B, and L is the 
strength of four-spin interaction of the elementary squares or faces ( i jkl j .  In this 
Hamiltonian the bond dilution does not affect the two-spin coupling, but the free energy 
of this problem can be expressed readily in that of the system where the two-spin 
interaction term in (1) is multiplied by rij. 

The partition sum 

Z =  { r ,s ,s )  (IT sites [t i+(l--ri)eA])( edges IT e ~ p [ K ( 1 - r ~ ) ( l - r ~ ) + B ( l - ~ ~ ~ ) ] [ l + ~ e ’ - l ) r ~ r ~ ~ , , ~ , ] )  

The summand (4) contains besides multiplicative factors two terms for each site, 
generically t and (1 - t)eA, two for each edge, 1 and (e’ - l)rtS, and two for each face, 1 
and (eL - 1)rtrrrTT~SSS. Expanding the product, one obtains a number of terms, each of 
which can be represented by a diagram on the lattice, by means of the following rules. 

(i) When the term (1 - r)eA is taken, a dot is placed on the corresponding site. 
(ii) The term (eL - 1)tttt~rTTSSS is represented by a dot in the middle of the face and 

(iii) O n  the four edges surrounding a dotted face, the terms (e’ - 1)ttS and 1 are 

(iv) On the remaining edges bonds are placed whenever the term (eJ - 1)tfS is 

bonds are placed on its surrounding edges. 

taken together, adding up to e’. 

chosen. 
A typical diagram is shown in figure 1. 

For each diagram the summation over {t, s, T }  can be performed trivially to obtain 
the contribution to 2. The sum over t variables is inhibited by the distribution of dotted 
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sites. Besides, each dotted site contributes a factor eA and each nearest-neighbour pair 
a factor eK. The s variables on sites connected by bonds must be equal. Each dotted 
face contributes a factor eL- 1 and constrains the T on its surrounding edges. In 
addition since the s variables that surround a dotted face must be equal, the surrounding 
edges contribute e'. From the remaining edges we obtain a factor e' - 1 or 1 depending 
on the presence of a bond. For the total partition sum this results in 

= 1 e A ~ i + K ~ , ( e J  - 1 ) 6 - 4 w + ~ _ ( ~ L  - 1)" eJ(4w-~w)(efJ + 1)E--dw+pWqc--v, ( 5 )  

Here U is the number of vacancies or dotted sites, pu  the number of nearest-neighbour 
pairs of vacancies; w is the number of dotted faces and p w  the number of nearest- 
neighbour pairs of them; b is the number of bonds, c the number of connected 
components (regarding an isolated site as a component) and E the total number of 
edges. The summation in (5) is over all graphs consisting of bonds, dotted sites and 
dotted faces in which each dotted face is enclosed in four bonds and no bond is incident 
at a dotted site. 

The dual of the original square lattice Y is again a square lattice 9, bs usual sites, 
edges and faces of 50 correspond to faces, edges and sites respectively of 9. Therefore a 
dotted site of Y can be interpreted as a dotted face of the dual lattice, and vice versa. If a 
bond is placed on those edges of 9 to which the corresponding edge of Y is empty, this 
completes a 1-1 map of graphs on Y to graphs on 9. As an example figure 2 shows the 
dual graph of figure 1. Note that also on the dual lattice each dotted face is enclosed in 
four bonds and no bond touches on a dotted site. 

Each component of the original graph is enclosed in a loop or circuit of the dual 
graph. The number of components c is therefore equal to the number of circuits fof the 
dual graph. Let 1 be the number of circuits of the original graph, and let the symbols 
introduced in equation (5) provided with a - denote the corresponding quantities of the 
dual graph; then the dual map of graphs is characterised by the equations 

v ' =  w ,  = p w ,  G = u ,  p' ,=pv,  T = C ,  ? = I ,  i = E - b .  (6 )  

These numbers are not all independent, but related by Euler's equation N - b + 1 - c = 
0,  in which N is the total number of sites. The sum over all allowed graphs of Y can be 
written as a sum over the same class of graphs on 9. Thus the partition sum satisfies the 
duality relation 

g 

where the subscript on the partition sums 2 refers to the lattice on which it is evaluated, 
and where 

@a)  

(86)  

(8c)  

(84 

@ e )  

.i e - 1 = q(eJ - I)-', 

e'= (1 -e-J)(eB + 11, 

e'+ t = (eK/q)(eJ + q  - I), 

e'-- 1 = ( l / q )  eA+4K. 

e'= q(eL- 1)(1 -e-J)-4(eB + i)-*, 

In the space of five parameters J, K, A, B and L a two-dimensional subspace of self-dual 
Hamiltonians is found. The critical subspace is likely to be larger. In the limit A = -00, 
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I ------- 
Figure 1. A n  example of a graph in the expansion of 
equation (4). The broken lines represent the edges 
of the lattice. Bonds placed on  the edges are 
indicated by full lines. Heavy dots placed on  the sites 
or faces represent vacancies or four-spin coupling 
terms respectively. 

Figure 2. The dual graph of figure 1. The bonds of 
the graph shown in figure 1 are indicated by broken 
lines. The full lines represent bonds of the dual 
graph. 

Figure 3. The surrounding lattice 2‘ associated with 
the dot configuration of figure 1 is indicated by the 
full lines. The broken lines show the original lattice 
9. 9 consists of the surrounding lattice of 9 from 
which for each dot the four surrounding edges are 
deleted. 

K is a redundant parameter, and likewise for L = 0, B is redundant. These redun- 
dancies probably continue to exist for finite L and A, thus giving rise to a four- 
dimensional critical manifold. 

3. Equivalent vertex model 

The dilute Potts model defined by (2) will be shown to be equivalent to a vertex model 
by means of the graphical method introduced by Baxter er a1 (1976). For the detailed 
arguments and definitions we refer to their article, but we shall try to remind the reader 
familiar with their concepts. 

Consider the graphical expansion (5) of Z. Each graph is a configuration of bonds on 
edges and of dots on sites and faces satisfying certain restrictions. Let the dots be placed 
on the lattice first, and also bonds on all the edges that surround the dots on faces. While 
these are held fixed, a part of the total sum can be performed by summation over bond 
configurations on the remaining edges not touching on vacancies. In formula: 
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where 

W(dots) = 1 (e'- l)b-4w+pw qc-. 
bonds 

The first sum (9) is over all configurations of dots and the second (10) over all 
configurations of bonds compatible with the dots. 

With each such configuration of dots we associate a restricted lattice R The sites of 
3 are all non-vacant sites of Y or groups of sites coupled via one or more of those bonds 
that surround dotted faces. Thus each dotted face couples four sites of Y to form one 
site of 3, and if neighbouring faces have dots, one site of 9 may correspond to even 
more sites of 9. The edges of 3 are all those edges of Ythat do not touch a vacancy or a 
dotted face. W(dots) is the partition sum of a pure Potts model on 2. 2 can therefore 
be viewed as a grand-canonical partition sum of Potts models. 

Baxter eta1 begin with a planar, not necessarily regular lattice 3. They introduce its 
surrounding lattice 2" consisting of polygons surrounding the sites of 9. Sites as well as 
faces of 2' correspond to faces of 2". The sites of 2' have either two or four neighbours 
and are called external or internal sites respectively. Internal sites correspond to edges 
of 9. The edges of 2" (but not necessarily of 2) must be straight. An ice-type vertex 
model is then defined by placing an arrow on each of the edges of so that an equal 
number of arrows point in and out at each site of 2". A weight is associated with each 
site depending on the relative angle of the four (or two) edges, and on the configuration 
of arrows on these edges. It is then proven that the partition sum of the vertex model is 
equal to that of the Potts model. 

Following Baxter et al, we associate with the square lattice Y its surrounding lattice 
Y', the sites of which are the midpoints of the edges of 9'. Since sites as well as faces of Y 
are associated with faces of Y', a configuration of dots on both sites and faces of Y 
corresponds to dots on faces only of Y'. 

With each restricted lattice 9 we associate as surrounding lattice a restriction of 
9'. The edges of Y' not directly surrounding a dot are also edges of 2". Figure 3 shows a 
dot configuration on Y and the corresponding surrounding lattice 9'. 

As W(dots) is the partition sum of a Potts model on 3 it is equal to the partition sum 
of a suitably defined ice-type model on 2'. Therefore Z can be viewed as a grand- 
canonical ensemble of ice models. It is convenient however, to consider it as a partition 
sum of a generalised ice-type model on Y', which can be defined as follows. 

(i) Place dots on some faces of Y' so that no pair of neighbouring faces have dots 
simultaneously. 

(ii) Place arrows on all those edges of Y' that do not constitute a dotted face, so that 
at each site an equal number of arrows point in and out. At each site there are sixteen 
possible arrangements of dots and arrows which are shown as lines ( b )  and (b ' )  of 
figure 4. 

(iii) Associate a weight wk with each site, as given by the expressions ( a )  and (a ' )  
shown in figure 4 corresponding to the configuration of arrows and dots at the site. 

(iv) The partition sum of the model is the sum over all such dot and arrow 
configurations of the product of the weights of all sites. 
The weights w1-6 are those given by Baxter et al, with 

and W7-16 are designed to take care of the weight of the distribution of dots in 
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Figure 4. Weights and configurations. Lines ( 6 )  and (b‘) show the 16 possible configura- 
tionsof the ice-type modelequivalent withadilutePottsmode1. Lines(a) and ( a ‘ )  represent 
the weights of each of the configurations. The weights depend on the orientation of the 
arrows relative to the edge of the original lattice Yindicated by a broken line. Lines ( c )  and 
(c’) ( ( d )  and (d ’ ) )  show the corresponding configurations in the SRM (Ising model) as defined 
in $ 4. 

With these definitions the partition sum 2‘ of the generalised ice-type model is given by 

(13 )  Z’ = (eB + llE 4 ” ’ ~ .  

The parameter z is real for 4 >4  and complex with / z /  = 1 for q (4. 

4. Equivalent roughening and Ising models 

The generalisation of the ice model defined above can be readily translated into a 
roughening model which is a natural generalisation of the BCSOS model (Van Beijeren 
1977). 

Consider the ice-type configurations shown as lines ( b )  and (b’) of figure 4. Turn all 
the edges to the left over an angle 7r/2. This results in the configurations shown as lines 
(c) and (c’) in the same figure. Note that the curl of the arrow arrangements thus 
obtained is zero. Therefore the figures 4(c) and (c’) can be viewed as configurations of 
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four columns of different integer and half-integer heights, so that edges without arrows 
link columns of equal height, and edges with arrows connect columns that differ in 
height by 5, the arrow pointing in the direction of the higher column. If the weights ( a )  
and ( a ’ )  are assigned to the column configurations (c) and (c’), this completes the 
definition of a roughening model equivalent to the dilute Potts model given in (2). We 
shall refer to this roughening model as SRM (staggered roughening model). 

It is convenient to differentiate between two sublattices 1 and 2, consisting of the 
sites of 9 and 9’ respectively. The height of columns on sublattice s will be denoted by 
h, or h:. 

A special case of the SRM is the BCSOS model defined by Van Beijeren (1977), in 
which only configurations 1-6 are allowed. In those configurations let hl be integer and 
h2 half-integer. With that convention the dots in the other configurations denote 
columns of the ‘wrong’ height, i.e. integer hz and half-integer h l .  Note that a column of 
the wrong height is always equal to all its neighbours. 

In passing we observe that lines ( d )  and (d‘ )  of figure 4 show configurations of a spin-1 
king model which again is equivalent to the dilute Potts model (2). The spins U, on 
sublattice s are defined as 

~1 = COS (bin), u2 = sin(h2n). (14) 

For integer and half-integer values of h, U is 0 or f 1. By a shift of h to h + 1, which does 
not affect the energy, all U variables change sign, so that the 16 configurations listed in 
figure 4 are all degenerate with their spin-inverted twins. The total number of allowed 
configurations of an elementary square of four spins is 32 .  

Vacancies in the Potts model correspond to instances of u2 = 0, while four-spin 
interaction corresponds to u1 = 0. In the context of this Ising model we shall use the 
terminology of vacancies and dilution for all U = 0, irrespective of the sublattice. 

5. Reformulation in periodic fields 

The variables of the above-defined SRM can assume integer and half-integer values. A 
system with discrete variables can be described as a model with continuous variables in 
which a field, enhancing the original discrete values, is taken to infinity. The advantage 
of such description in the case of the SRM is that models with continuous variables of 
infinite range are relatively well understood. A rather large family of such models is in 
the universality class of the gaussian model, in which an infinite hierarchy of critical 
exponents can be calculated explicitly (Kandanoff and Brown 1979). Therefore in this 
section we shall rewrite the SRM as a model with continuous variables h in the presence 
of fields periodic in h. The relation with the gaussian model will be discussed in $6.  

Let the variables hl and h2 reside on the sites of two interpenetrating square 
sublattices 1 and 2, as in the SRM except that hl and h2 now may assume all real values. 
The Hamiltonian in the absence of fields is 

The summations are over nearest-neighbour and next-nearest-neighbour pairs of 
variables. Therefore V2 is an interaction within each sublattice, and Vl couples the two 
sublattices. Both V l ( h )  and V 2 ( h )  are even functions increasing with Ihl and analytic at 



206 B Nienhuis 

h = 0. V1(h) is CO for h 3 1. The precise form of VI and Vz is not important but for 
convenience we will take V2(h)  = h2. 

Table 1 shows a number of interaction terms that will be added to the reduced 
Hamiltonian -OHG in order to turn it into the Hamiltonian of the SRM. These 
interactions will be discussed in the order in which they are listed. 

Table 1. Fields listed in the first column are conjugate to periodic functions of the heights, 
shown in the second column. The last column displays the same functions in Ising language. 
The variables h,,  h2, h ;  and h i  reside on the corners of an elementary square. 

FL cod4 r h  ) - 
F2 
A- cos(2rh 1) - cos(2rhz) IT; + U ;  

A+ cos(2rh 1 j + cos(:! r h  ’ j - U 2  
A T  cos(rh1) cos(rh ; 1 - s in( rh2j  sin(xh; ) u,u1 - u 2 u z  

P- cos( rh ; )  sin(rh;) [c0s(2.xhl)+cos(2rh,)] (ui -r:)u;cr; 
K ,  COS(:!T~~) c o s ( 2 ~ h ;  j * ~ 0 ~ ( 2 r h z j  cos(2rh i  j o:Cr;z T &;’ 

s in( rh  1’ cos( rh 2)2  (1 - C r ? J (  1 -Cr; j 

2 2  

p+ cos( rh l j  s in(rh2j  (.1p2 , 

The field FI should be taken to infinity so that all non-integer values of 2h  are 
suppressed. This field acts on both sublattices alike. Given the remaining values of h, 
the corresponding Ising spins (14) u1,2 are 0 or i 1. They provide a convenient 
language to refer to height configurations and interactions, which we will use below. 
The second and third columns of table 1 give the same function but expressed in h and U 

respectively. 
The field Fz couples to a function of two neighbouring spins which is 1 if both are 

vacant and 0 otherwise. Taking this field to -CO the only surviving spin configurations 
are the ones listed in figures 4(d) and (d ’ )  and their opposites. The remaining fields in 
table 1 are necessary to reproduce the weights wk. 

The field A- controls the number of vacancies, and A+ the difference in dilution 
between the two sublattices. In the Potts model A+ + A -  corresponds to the four-spin 
interaction L and A+ - A- to the chemical potential A. 

The natural ordering of the Ising version of the SRM is the prevalence of non-zero 
spins equal to their second neighbours. The ordering of both sublattices together is 
governed by the inverse temperature p in equation (1 5 ) .  The difference in ordering of 
the two sublattices is controlled by the field AT. The field P, controls the orientation of 
w1 relative to u2. AT and P ,  are not independent but both correspond to the parameter 
J in the dilute Potts model. 

Another field that controls the relative orientations of u1 and v2 is P-, but it only 
acts when a neighbouring spin U’ is zero. Depending on the sublattice of U’ ,  it aligns or 
anti-aligns g1 and uz. This complicated interaction is somewhat more natural in the 
SRM: if a basic square of the lattice contains three columns of equal height and one 
different, P- tends to make the single different one the higher. 

Finally K++K- and K+-K_ are the lattice gas couplings between vacancies in 
sublattices 1 and 2 respectively. 

Table 2 shows the relation between the fields in the continuous model, the weights of 
the SRM and the interaction parameters of the dilute Potts model. This table intends to 
give a physical intuition for the related quantities, not exact equations. The precise 
relations between the parameters of the dilute Potts model and the SRM are given in 
figures 4(a)  and (a ‘ )  together with the equations (11) and (12). 
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Table 2. Correspondence between fields in the gaussian model, weights of the staggered 
roughening model and interaction parameters of the dilute Potts model. w’s with multiple 
subscripts stand for geometric averages, e.g. 0 5 . 6  = (f05w6)112 and 0 1 - 4  = (qw203fd4) . 114 

Gaussian 
fields SRM weights 

Dilute Potts 
interactions 

6. Critical behaviour 

It is the purpose of this section to utilise these equivalences between models to calculate 
some critical exponents of the Potts model. This is done by showing under what 
conditions the SRM may flow towards the gaussian model under renormalisation. The 
extensive knowledge of the gaussian critical exponents then serves to analyse the critical 
behaviour of the SRM and therewith of the dilute Potts model. 

Unlike the previous sections, the arguments here are not all rigorous. Some 
assumptions have to be made on the way, but given their validity two Potts exponents 
can be calculated as functions of q analytically. 

Realising that it is the rough phase of a roughening model that flows towards the 
gaussian model, it is helpful to gain a physical intuition for the location of the rough 
phase, and its relation to the critical regime of the Potts model. 

The phase transition in the Potts model can be driven first order by increasing 4 or by 
increasing the number of vacancies. Large q corresponds to large values of ws and U6 

and likewise large dilution translates into large w7 and w8. Observe that configurations 
5-8 are exactly the ones without a net gradient. A predominance of those four 
configurations therefore drives the model into the smooth phase. This indicates that the 
first-order transition of the Potts model corresponds to the smooth phase of the SRM. 

can be found in a 
smooth phase. If for example x is small, height gradients are the result mainly of 
configurations 1 and 2. However these correspond to gradients on sublattice 2 only, 
and therefore cannot develop large fluctuations over large distances. Only when x = 1, 
that is in the critical region of the Potts model, and for sufficiently small 4, one can 
expect the SRM to be rough. These considerations support the idea that the second- 
order phase transition on the Potts model corresponds to the rough phase of the SRM 
and can therefore be described by the gaussian model. In order to calculate exponents 
the identification between operators in the Potts and gaussian models needs to be made 
more precise. 

The first step is to see that the Hamiltonian HG without fields does renormalise 
towards a gaussian. By virtue of the analyticity of VI, Ha deviates from a gaussian only 
by terms like ( h  - h’)2n with n > 1. It is an easy check to verify that these terms are 
irrelevant in the vicinity of the gaussian fixed line. Numerical calculations (Jose et a1 
1977) indicate that also finite non-gaussian terms vanish under renormalisation. On the 

Also the SRM corresponding to a pure Potts model for small 
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basis of these indications we assume that renormalisation flows do lead HG to a gaussian 
form. 

The fields of table 1 are analysed in the same spirit. If a field F is irrelevant at the 
gaussian line, it is assumed that the presence of F in the initial Hamiltonian does not 
prevent its flow to a gaussian renormalised Hamiltonian. 

Let yF be the exponent of a field F defined by the behaviour of the singular part of 
the free energy as F2'vF. The scaling index of the operator 0, conjugate to F is related 
to y F  by xF + yF  = 2. The correlation function of 0, at criticality is governed by .xF via 

O F ( r ) ) K  l r l - 2 x F ~  i 16) 

where the vectors 0 and r are positions in the lattice. The exponents of the fields in table 
1 can thus be caluclated by means of the associated correlation function. The cor- 
relation functions in the gaussian model needed to calculate the Potts exponents are of 
the form 

(exp(27rikh(r) +27rilh(r') +27rimh(0))) = 6 k .  i - n I . O  Ir; zr'k"''lr'~ Zr i i z+k" l r  - r'iTfk'.  
j 17) 

Here t is proportional to the temperature of the gaussian model. Since the actual 
renormalisation flows are not known, t is an unknown function of the initial tempera- 
ture @ and of the fields. All critical exponents however can be parametrised in the one 
parameter t. 

The operators in table 1 can be rewritten as linear combinations of sines and cosines 
of various heights, for example the operator conjugate to F2. 

sin(7rhl)* ~ o s ( 7 r h ~ ) ~  

= a{ 1 + cos(27rhz) - cos(27rh 1) - 4COS[2 7r(  h , + h 2,3 - icos[2 7rl h 1 - 122 I]}. ( 18 1 

The terms cos(27rh2)-cos(27rhl) represent a field staggered in both directions of the 
lattice. The correlation function of this staggered operator between different elemen- 
tary squares of the lattice can be found from equation (17) by differentiation with 
respect to both components of r and of r' and setting k = -1 = 1 and m = 0. The 
operator therefore has a scaling index 2 + t and is consequently irrelevant for all t. 
Under renormalisation flow some potentially relevant operators will be generated, but 
in the SRM these are already present. The term cos[27r(hl+hz)] is equivalent to 
cos(47rh) and has scaling index4t. Finally the cos[27r(hl - h 2 ) ]  term acts as the square of 
a gradient of h and thus modifies the effective temperature of the gaussian model. 

The same analysis on all the operators of table 1 shows that they can all be written as 
direct and staggered spin-wave operators and gradients. This implies that all the 
exponents associated with the parameters in the Potts Hamiltonian are linear functions 
of t. The most relevant fields are A+, AT and P+ to which the dominant contributions 
are cos(27rh) or sin(27rh). The exponent of these twofold fields is 2 - t. The dominant 
contribution to the other fields is like cos(47rh) with exponent 2-4t. These will be called 
fourfold fields. Less relevant terms like cos(87rh) will be generated under renor- 
malisation but the Potts Hamiltonian contains no adjustable parameters to control their 
amplitude. For !< t < 2 only the twofold fields are relevant and for t <; both the 
twofold and the fourfold fields are relevant. It will become clear that the singly and 
doubly unstable segments of the gaussian line control critical and tricritical behaviour 
respectively. 
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In the pure limit and in the absence of the P ,  field a simple duality on one of the 
sublattices of the Ising version of the SRM reveals that AT corresponds to the 
temperature variable of the Ashkin-Teller (1943) model. The exponent of AT has 
been calculated (Kadanoff and Brown 1979, Knops 1980) as a function of z which 
parametrises the critical line x = 1. This results in an explicit relation between t and t 
and therefore between t and q :  

2 - l / r  = 4 arg(z), 2 C O S ( T / 2 t )  = -p2, (19) 

for z on the unit circle, i.e. q < 4 .  
According to the universality hypothesis the critical exponents of a ferromagnetic 

Potts model depend on q only. This implies that vacancies and four-spin interaction do 
not affect the validity of equation (19). In addition we make the usual assumption that 
the renormalisation group which brings the SRM towards the gaussian model is analytic. 
Then the initial parameters of the SRM are analytic in the final temperature of the 
gaussian model. Therefore equation (19) is valid not only when t >+ but also on the 
doubly unstable segment t < 4. 

Since the parameters in the dilute Potts model all translate into spin-wave operators 
in the SRM, the exponents must be linear functions of t. Therefore knowing t as a 
function of q, the value of a Potts exponent at two different values of q suffices to 
determine its entire q dependence. For the two leading thermal exponents y l  and y2 at 
least two such values are known: the tricritical point of the q = 1 ( t  = i) model is like the 
Ising critical point with field (Nienhuis et a1 1979) with y1 =? and y2 = 1. At q =4 
( t  = $) the second exponent must change sign y 2  = 0. The critical point of the Ising 
model ( q  = 2, t = 3) has y1 = 1. Hence the two leading thermal exponents are 2 

y l =  3 - 3 t  (20) 

y 2 = 4 - 8 t  (21) 

and 

where t is given by (19) with t > $ for the critical and t < i for  the tricritical point. These 
formulae have been conjectured partly on the basis of numerical evidence by den Nijs 
(1979) and Burkhardt (1980). Equation (20) has been calculated analytically for the 
pure Potts model by Black and Emery (1981) and Knops (1981). Equation (21) 
contains new crossover and correction-to-scaling exponents. The values of y 1  and y 2  
for integer q are listed in table 3 and are discussed in 8 7. 

Although the above approach results in actual numbers for the critical exponents, it 
is unsatisfactory in that it does not provide a clue how those exponents come about. 
Also the derivation of equation (20) and (21) depends on the correct identification of 

Table 3. The leading and next-to-leading thermal exponents y l  and y z  of the dilute Potts 
model. The first four columns represent critical exponents and the last four tricritical. The 
values for q = 4 are both critical and tricritical. The exponent y z  governs corrections to 
scaling and crossover at the critical and tricritical points respectively. 

Critical Tricritical 
q o 1 2 3 4 3 2 1 0  
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exponents at different values of q. The followingexplanation of the values of y l  and y 2 ,  
even in retrospect, may increase the confidence in their validity. 

Both AT and P, correspond to the temperature variable of the Potts model (table 
2). The most relevant operator conjugate to AT is cos(27rh) and to P, sin(27rh). Both 
have the exponent 2 - t which therefore would be the most obvious guess for the Potts 
exponent y l .  This gives the Ising model an exponent $ rather than 1, and therefore 
cannot be correct. The actual behaviour depends on the precise combination of AT 
and P,.  For q < 4  P,  is imagninary while AT is real. There must be a ratio of P ,  and 
AT which at large length scales looks just like a pure power exp(27rih). Since AT and 
P, will renormalise differently, especially initially, this ratio is not known. Black and 
Emery, however, verified by finite size scaling that in the pure Potts model P, and AT 
come just in that proportion. Therefore a Potts model almost at  its critical temperature 
looks after many renormalisation steps as a gaussian model with a field exp(27rih) and 
besides that only four- and more-fold fields. Then the first non-vanishing contribution 
to the energy-energy correlation function of the Potts model for large separation r is 

122) 

evaluated in the gaussian model. The asymptotic behaviour of this correlation function 
can be calculated by means of equation (17) and gives for the Potts exponent V I  

equation (20). 
In this formulation of the Potts model the conspiracy between AT and P, appears 

very accidental. It is tempting to think that the model can be written such that the ratio 
between P, and AT maintains a special symmetry which is preserved under renor- 
malisation. 

Equation (21) for y2  can be understood by the following reasoning. At the tricritical 
point of the Potts model the fourfold field is relevant. Therefore the tricritical point can 
be reached only by adjusting the dilution or the four-spin interaction so that the 
effective four-fold field h4 vanishes. Crossover phenomena are governed by the flow of 
h4. Consider the flow diagram of h4 in the neighbourhood of the gaussian line, figure 
5 ( a )  and compare it with the phenomenological flow diagram for the Potts model as 
found by the approximate renormalisation group, figure 5(c) (Nienhuis eta1 1979). The 
topological difference between the two patterns is the existence in figure 5 ( c )  of flow 
lines commencing at the unstable part of the fixed line and terminating at the stable 
segment. However, when the flow pattern 5 ( a )  is plotted in a h:  versus tC1 diagram 

I ( e x p ( 2 ~ i h  (0) + 27rih(r) -47rih (r’)))dr’, 

qt-+- 

(01 ( b )  ‘ i  i 

Figure 5. Renormalisation flow diagrams. The standard flow pattern of a fourfold field h4 is 
shown as  ( a ) ,  while ( b )  represents the same figure plotted against h:. The phenomenologi- 
cal flow diagram of a dilute Potts model is shown as (c ). 
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(figure 5 ( b ) )  then these flow lines exist in the region of negative h i .  Figure 5(b;  can be 
turned into 5 ( c )  by using as the vertical axis a constant of the flow. This picture indicates 
that the second relevant parameter at the tricritical point of the dilute Potts model is 
proportional to hz. The exponent associated to that variable is twice the exponent of h4, 
which results in equation (21). 

Though the exact equations connecting figures 5(a)  and ( c )  cannot be calculated 
from the mapping between the Potts model and the SRM, some global features can be 
verified. Variation of h i  at fixed t = f i n  figure 5 ( b )  corresponds roughly to variation of 
q at fixed dilution in 5 ( c ) .  Values of q > 4 correspond to real h4 and q < 4 to imaginary 
h4. The actual value of h4 is the result of several effectively fourfold fields, only one of 
which, P- ,  may be imaginary. The value of P- is cosh-l(iql’*) which is real for 4 > 4 and 
imaginary for 4 < 4. 

Another check is the variation of h4 with dilution for fixed q. The value of P- is a 
function of q only, but the amount by which it contributes to the effective fourfold field 
h4 varies with dilution. P- only affects the weights 09-16, which are most important at 
intermediate dilution. In the pure limit 01-06 dominate and in the extreme dilute limit 
w7 and us. Thus one might expect that increasing dilution corresponds to an increase 
followed by a decrease of imaginary h4, which is indeed what comparison of figures 5 ( b )  
and ( c )  indicates. 

7. Summary and discussion 

We have demonstrated that a Potts model with two- and four-spin interaction and site 
and bond dilution is equivalent to a roughening model with various symmetry breaking 
interactions. For convenience the discussion is restricted to a square lattice, but without 
difficulty it can be generalised to any planar lattice. The sites of the roughening model 
are those of the original model and its dual lattice combined. 

Subject to the assumption that the rough phase of the roughening model flows under 
renormalisation towards the gaussian model, it is shown that all the exponents of the 
original Potts model are linear functions of the renormalised temperature in the 
gaussian model. This renormalised temperature can be related to the intitial Potts 
Hamiltonian via a known exponent. A few exact solutions at special values of q furnish 
the information needed to determine the leading and next-to-leading thermal 
exponents. A quantitative picture is given to explain how the resulting exponents arise 
from the simple spin-wave operators. It should be stressed however that the arguments 
leading to the actual value of the exponents do not depend on the validity of this 
explanation, but only on the existence of an analytic renormalisation group from the 
roughening to the gaussian model. 

Table 3 shows the exponents y 1  and y 2  for integer q. As y 1  was already known at 
least in the form of a conjecture, y 2  may be of most interest. The value y 2  = --$ for the 
Ising correction to scaling exponent is somewhat surprising, as the analyticity structure 
on the Onsager free energy suggests integer corrections to scaling exponents or none at 
all. It is of course always possible that the amplitude of the confluent singularity 
vanishes at the spin-; nearest-neighbour Ising model. A variational renormalisation 
calculation (Nienhuis et a1 1980, Burkhardt 1980) suggests another solution. At every 
integer q the exponents can be divided into a physical set, associated with configurations 
in which q or fewer spin states are represented, and an unphysical set associated with 
more than two spin states. The free energy is independent of the unphysical scaling 
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fields. The approximation for q = 2 gives physical exponents roughly equal to negative 
integers and an unphysical exponent of - 1.2. This indicates that the exponent - 4  does 
not show up as a correction to scaling to the free energy of any Ising model, but only to 
its derivative with respect to q. 

The correction to scalingfor the three-state Potts critical point may or may not affect 
the free energy of the hard-hexagon model (Baxter 1980). It does not show up in the 
order parameter. 

The approach in this paper is similar to that of Black and Emery (1981), who 
calculated the critical exponent, y l ,  of the Potts model. The main contribution of this 
presentation is the calculation of the critical exponent y 2  and of both the tricritical 
exponents y l  and y 2 .  In addition the phenomenological picture of merging critical and 
tricritical points on which dilution is the marginal operator is confirmed. 

The first term of an expansion of y2  in half-integer powers of 4 - q has been correctly 
predicted by Nauenberg and Scalapino (1980) on the basis of a phenomenological 
renormalisation group. They also found a logarithmic correction for the four-state 
Potts model which agrees with the present analysis. However their variables 4 and q? 
contain non-integral powers of the spin-wave fields. This indicates that the renor- 
malisation equations (1) and (2) in the paper of Nauenberg and Scalapino are the first 
terms in an expansion which may contain fractional powers. Alternatively, one may 
identify 4 with the twofold fields and set b = a .  Spin-wave charge conservation then 
requires that the free energy depends on 4 only via 44(pL2 + CL’). which gives the correct 
exponents by means of a dangerous irrelevant variable. 
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